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Abstract: Air-cargo capacity is random and affected by 
the number of passengers carried, because both cargo 
shipments and passenger bags are carried in a belly of a 
plane. The fewer the passengers carried, the higher the cargo 
capacity. Current seats sold usually provide some 
information on the passengers carried, and consequently the 
cargo capacity. Records of the passengers carried and the 
seats sold are readily available in a passenger revenue 
management system. We propose mathematical models to 
evaluate monetary benefits, if different levels of information 
in the passenger revenue management system are shared by 
the cargo revenue management system. At a minimum level, 
an airline constructs a prior distribution of random cargo 
capacity from a historical record of passengers carried. At a 
higher level, the airline updates the distribution of cargo 
capacity based on the number of seats sold. A numerical 
example that illustrates the proposed methodology is also 
provided. 
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I. Introduction 
 
Air-cargo operations are a significant source of revenue for 
passenger airlines, most of which carry cargo shipments in 
the belly of their aircraft. The air-cargo industry is expected 
to grow five percent annually during 2007–2027 [6]. The 
growth is propelled by global free trade, and the emerging 
implementation of supply chain management strategies, 
which emphasize on short lead times. Despite its importance, 
revenue management (RM) systems for managing air-cargo 
spaces are much less developed than those for controlling 
prices and availability of passenger tickets.  
Air-cargo RM is more complex than passenger RM. Cargo 
capacity is a multi-dimensional quantity; two important 
dimensions are weight and volume. The flight may be full 
with respect to the weight capacity but not the volume 
capacity, or vice versa. In contrast, the total passengers on 
board are constrained by a one-dimensional quantity, the 
number of seats on the plane. Moreover, cargo capacity is 
random and may be affected by various factors, such as the 
amount of fuel, the length of the runway, the weather 
condition at the departure time, and the number of 
passengers carried as well as their bags. The belly of the 
plane carries both passenger bags and air-cargo shipments.  

The cargo capacity depends on the passengers carried. The 
smaller the passenger load factor (the percentage of seats 
occupied), the larger the cargo capacity. For instance, with 
full passenger load of 290 seats, Airbus A330-300 has 10 
tons of cargo capacity: If the load is 90%, then the cargo 
capacity could be increased by 2.6 tons. (The passenger 
weight--the average weight of the passenger plus both 
normal baggage allowance and excess baggage--is assumed 
to be 90 kilograms; see [10].) Since the capacity constraint 
depends on both the number of passengers and the cargo, 
“decisions for both passenger and cargo are interrelated and 
ideally should be coordinated by a single RM system” [14, p. 
563].  
Currently, air-cargo and passenger RM systems are 
separated; each locally maximizes its own expected 
contribution. The integrated (single) RM system would 
attempt to maximize the total contributions from both 
passenger and cargo, i.e., to attain global optimization. To 
operationalize the integrated RM system requires data to 
accurately characterize and model both passenger and cargo 
demand.  The optimal total contribution achievable through 
the integrated system is at least the combined contributions 
from the two isolated systems. However, the centralized 
system requires a huge setup cost, and the operating cost of 
running the sophisticated centralized system may exceed 
that of running the decentralized system. It is important to 
determine whether the expected incremental contribution 
outweighs the fixed setup and operating costs.   
Information on both passenger and cargo is visible in the 
centralized system, whereas in the decentralized system, no 
information is shared. Between the decentralized and 
centralized systems, there is also a spectrum of systems with 
different levels of information sharing. Recall that the cargo 
capacity depends on the number of seats sold. At a minimum 
level, cargo RM could construct a distribution of the random 
cargo capacity from a historical record of passenger load, 
which is available in the passenger RM system. At a greater 
level of information sharing, passenger RM could provide 
the current number of passenger bookings to cargo RM so 
that the distribution of the cargo capacity could be updated 
periodically.  The greater level of information sharing, the 
higher expected total contribution and the higher operating 
cost. In this article, we propose quantitative modeling to 
measure the monetary value of information sharing.  
We consider a cargo booking problem on a single-leg flight 
with the goal of maximizing the expected net contribution, 
which is the total margin contributions of accepted 
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shipments throughout the cargo booking horizon minus any 
penalty costs if available cargo capacities are insufficient to 
accommodate these shipments. The problem is formulated as 
a finite-horizon Markov decision process (MDP); in each 
decision epoch, the carrier determines whether to accept or 
reject the booking request. We assume that the cargo 
capacity depends on the number of seats occupied at the 
flight departure time. The more seats occupied, the tighter 
the cargo volume and weight capacity constraints.   
The cargo booking horizon is shorter than the passenger 
booking horizon. A plane ticket can be sold one year in 
advance, whereas cargo bookings are often made within two 
weeks before the departure. With information sharing, the 
carrier is assumed to know the current number of passenger 
reservations at the beginning of the cargo booking horizon, 
and this information is used to update the distribution of the 
random cargo capacity. We refer to the particular level of 
information sharing the imperfect information case. At a 
lower level, the carrier receives only the historical record of 
passengers on board, and constructs the belief regarding the 
cargo capacity, but does not update the distribution. We call 
this the base case. The difference between the expected net 
contribution under the imperfect information and that in the 
base case represents the monetary value of information 
sharing. We also consider the case of perfect information, in 
which we assume that the number of passengers carried 
were available to the airline when it starts accepting cargo 
bookings.  
There is a vast literature on passenger RM (e.g., [14] for 
survey) and a number of articles that discuss complexities of 
air-cargo RM (e.g., [3] [5] [11]). However, fewer journal 
papers present mathematical models for air-cargo RM. 
Articles on the network air-cargo RM can be found in e.g., 
[2] [4] [13]. Below, we briefly review some articles on the 
single-leg flight. 
[7] Formulate a short-term capacity planning problem for 
air-cargo space as an MDP. In each time period, the carrier 
needs to determine how much short-term space to acquire 
given the long-term contract space in order to minimize the 
total cost, which includes the costs of short-term space and 
the penalty costs of backlogged shipments over the entire 
planning horizon. Their article considers a sequence of 
repeat flights; shipments may be sent via some later flights if 
the current flight is full. Putting it differently, all shipments 
are accepted and sent on the first-come, first-served basis.  
Our paper considers a single flight, and our objective is to 
determine an optimal booking control policy (rather than 
adopting the first-come, first-served heuristic). 
[1] Formulate an MDP for an air-cargo booking problem on 
a single-leg flight with the goal of maximizing the expected 
contribution. In each time period, the carrier needs to decide 
whether to accept or reject a booking request from a 
particular shipment type, which determines the distribution 
of volume and weight requirements and the expected freight 
charge. They show that an exact solution to the problem is 
impractical, because of its high-dimensional state space. 

They develop heuristics and compare their performances 
under various settings. To keep our problem tractable, we 
assume that the volume and weight requirements of each 
shipment are known at the time of the request. More 
importantly, the cargo capacity on the plane is random in our 
formulation, whereas it is fixed in theirs. Our optimal 
booking policy accounts for the uncertainty in the cargo 
supply. 
Mathematical models that incorporate the randomness of the 
cargo capacity can be found in e.g., [12] [15] [9]. In these 
articles, the cargo capacity is assumed to be a univariate 
random variable.  The first two articles consider a static 
(single-period) overbooking model; the carrier’s objective is 
to find an overbooking limit in order to maximize the 
expected contribution, which includes both oversale and 
spoilage costs. They are overbooking models, whereas ours 
is a booking control model, which attempts to achieve the 
best mix of demands from different shipment classes. The 
third article formulates a dynamic (multi-period) booking 
control problem as an MDP. The terminal value function is 
the expected offloading cost; the expectation is calculated 
with respect to the carrier’s prior belief regarding the cargo 
capacity. Their model is subsumed in ours. Furthermore, we 
allow the carrier to update the belief from additional 
information regarding the number of seats sold. 
The rest of this paper is organized as follows. In Section 2, 
we describe the cargo booking control process and develop 
an MDP model for the problem in each of the three cases. 
We provide a numerical example to illustrate the 
calculations of the value of information in Section 3. A 
conclusion is presented in Section 4. 
 
II. MDP Formulation  
 
Assume that the cargo booking horizon for the single-leg 

flight is comprised of  time periods, numbered in reverse 

chronological order. More precisely, time period  

corresponds to the beginning, and time period  
corresponds to the end of the booking horizon. These 
intervals are small enough so that at most one booking 
request arrives in each period. Each request to book a 

shipment belongs to one of the  types, and the arrivals of 
booking requests are independent across time periods. Let 

 be the probability that in time period a type-

request arrives, and  the probability that 

no requests arrive where . 
A request type determines the following three quantities: 
(volume, weight, contribution).  If a type- request is 
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accepted, then it generates a contribution of  and consumes 
 units of volume and weight, respectively. For 

instance, a contribution for a shipment may be computed 
as  where  kilograms per 
cubic meter [defined by the International Air Transportation 
Association (IATA) volumetric standard], and  is the 
contribution margin, the freight rate plus the ancillary 
contribution (e.g., special handling, insurance) minus the 
incremental costs (e.g., variable fuel costs). Note that two 
shipments which consume identical volume and weight may 
yield two different contributions, if one requires special 
handling and the other does not; the notion of types is 
simply a modeling device to capture the above situation. 
Cargo capacity depends on the volume and weight of 
passenger bags, because both cargo and passenger bags are 
transported side-by-side in the cabin of the combi-aircraft or 
in the belly under the main deck of passenger planes. Let 

 denote the volume and weight cargo capacity, 
if the number of seats occupied at the departure time 
(passengers carried) is s. If the available capacity 

 is not sufficient to accommodate total booked 
shipments [i.e.,  or  where  and are 
the total booked volume and weight, respectively], then an 
oversold situation occurs, and the carrier incurs penalty  

 
where  (resp., ) be a unit penalty cost per volume (resp., 
weight) excess. This penalty function is previously assumed 
and discussed in [1]. 
Let be the number of passengers carried, and  the number 
of seats that have been reserved from the beginning of the 
passenger booking horizon to that of the cargo booking 
horizon. Assume that they have a common state space 

 where . Note that if the 
airline overbooks,  can be greater than the number of seats 
on the plane. Recall that the cargo bookings normally start 
after the passenger bookings;  needs not be zero. If the 
beginning of the cargo booking horizon is two weeks before 
the departure, then is equal to  plus additional seats sold 
during the last two weeks minus cancellations and no-shows. 
Let  the conditional probability 
that the number of passengers carried is , given that the 
total seats sold at the beginning of the cargo booking horizon 
is .  
Assume that cash flows are not discounted, since cargo 
bookings occur over a short period. Furthermore, assume 
that the carrier is risk neutral, since the flights are repeated 
many times in each season. The carrier wants to determine a 
booking policy so that its expected total contribution is 
maximized. Suppose that the total seats sold at the beginning 
of the cargo booking horizon is . Let   be the 
maximum expected total contribution that can be obtained 
from time period  until the departure time, given that the 
total volume (resp., weight) sold is  (resp., ). We refer to 
the real-valued function  as the value function at time . 

The carrier believes that the passengers carried are  with 
probability . The optimality equations are as follows:  
 

  

  
 
In period  when the carrier has already sold units of 
volume and units of weight, the request to book a type-  
shipment is accepted, if  

 
An optimal policy states that we accept the request if its 
contribution  exceeds the expected loss from future 
contribution (i.e., the opportunity cost from accepting the 
request). 
Let  be the 
distribution of random variable . If the number of seats 
occupied at the beginning of the horizon is , then the 
conditional expectation of the carrier’s maximum total 
contribution is . The (unconditional) expectation 
can be found by the law of total probability: 

 
We refer to this as the expected total contribution under 
imperfect information. 
We also consider two other cases, namely the base case and 
the perfect information case. In the case of perfect 
information, we assume that the number of passengers 
carried becomes available to the carrier, when it starts 
accepting cargo booking requests. In other words, the carrier 
has perfect foresight and correctly forecasts the total seats 
occupied. Suppose that the number of passengers carried 
(the realization of ) is .  Let  be the maximum 
expected revenue that can be obtained from time period  
until the departure time, given that the total volume (resp., 
weight) sold is  (resp., ). The value function can be 
computed recursively via the following optimality equations: 
 

  

 
 
The expected total contribution under perfect information is 
obtained by weighting each scenario with the associated 
probability: 
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where  is the (unconditional) 
probability that the number of seats occupied at the end of 
the horizon is . We call vector 

 the carrier’s 
prior belief regarding the number of passengers carried. 
In the base case, we assume that the carrier does not know 
the number of seats sold at any time periods. However, it has 
the prior belief regarding the number of passengers carried. 
In contrast to the case of imperfect information, the carrier’s 
belief has never been updated, since it does not receive any 
additional information regarding the number of seats sold. 
The optimality equations in the base case become 
 

  

  
 
The expected contributions in the base case is 
 

 
 
The total contribution obtained in the case of perfect 
information corresponds to the best possible outcome. The 
carrier could not do better than this. The expected total 
contribution under imperfect information is bounded above 
by that under perfect information and bounded below by that  
in the base case: 

 
 
The difference  is sometimes referred to as the 
expected value of perfect information (EVPI), and  

 the expected value of imperfect information 
(EVPII); see Chapter 12 in Clemen and Reilly (2001).  
Calculations of these quantities are illustrated via a 
numerical example in the next section. 
 
III. Illustrative Example  

We divide the booking horizon into  time periods and 

categorize the shipment requests into  types. The 
request probabilities for shipment type are shown in Table 1, 
and the volume and weight requirements for each shipment 
type are shown in Table 2. With this choice of parameters, 
the expected number of requests for the entire booking 
horizon is around 142, the expected total volume and weight 
are 84 cubic meters and 15000 kilograms. These volume and 
weight capacities are approximately equal to those of Airbus 
A330-300. The freight rate is 50 per kilogram; i.e., 

.  The penalty costs are 

 per one unit volume oversold and  per 
one unit weight oversold. 
 

Table 1 Request probabilities for shipment type 
period\type 1 2 3 4 5 6 7 8 9 10 
1–19 .27 .20 .10 .07 .10 .10 .05 .05 .00 .00 

20–38 .30 .15 .05 .05 .06 .03 .04 .04 .02 .02 

39–57 .10 .08 .08 .08 .08 .09 .09 .08 .05 .06 

 
Table 2 Volume and weight requirements for each type 

Class 1 2 3 4 5 6 7 8 9 10 
Volume 
 (cubic meter) 

1 1 1 2 2 3 2 3 4 5 

Weight 
(hundred kg) 

1 2 3 3 4 4 5 5 10 10 

 
Assume that the flight contains 290 passenger seats. The 
volume and weight cargo capacities given this particular 
number of seats occupied are 75 cubic meters and 10400 
kilograms. The fewer seats occupied at the departure time, 
the more cargo capacities on the plane. The additional 
capacities are chosen such that one passenger seat is 
converted approximately into 90 kilograms and 0.1 cubic 
meters. Table 3 shows the cargo capacities for different 
numbers of passengers carried. In this example, we assume 
that the set of the numbers of seats sold at the beginning of 
the cargo booking horizon is  with the 
associated initial distribution . The 
conditional probabilities are given 
in Table 4. For instance, given that the number of seats sold 
at the beginning of the cargo booking horizon is 250, there is 
a 0.6 probability that the number of passengers carried is 
270 [i.e., ]. With this choice of 
parameters, the passenger load factor is around 90%. 
 

Table 3 Capacities for different numbers of seats occupied 
Seats 290 270 250 230 
Volume capacity (cubic meter) 75 77 80 82 
Weight capacity (hundred kg) 104 122 140 150 
 

Table 4 Conditional probabilities  
r\s 290 270 250 230 
290 0.9 0.1 0.0 0.0 
270 0.3 0.4 0.3 0.0 
250 0.2 0.6 0.2 0.0 
230 0.0 0.5 0.4 0.1 
 
The expected contribution under perfect information 
is , that in the base case  
(equivalently 83.1% of 626000), and that under imperfect 
information  (equivalently 86.6% of 626000). 
The EVPI is 100000, which represents the maximum 
amount that the airline would be willing to pay for perfect 
information. The EVPII is 22000: the carrier could improve 
the per-flight expected contribution around 22000 
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(equivalently 3.5% of 626000) by taking into account the 
number of seats sold at the beginning of the cargo booking 
horizon. We have demonstrated how our mathematical 
models can be used to quantify the monetary value of 
information sharing. 
 
IV. Concluding Remarks  
 
We present an MDP model for the single-leg air-cargo 
booking control problem under stochastic capacity. The 

cargo capacity is random but dependent on  the number of 

passengers carried, which also depends on  the number of 
seats sold at the beginning of the cargo booking horizon. 

The carrier can infer the distribution of  from that the 

realization of . We propose a mathematical model for 
evaluating the expected monetary gain when passenger RM 

shares information on with cargo RM.  
Our study can be extended in several directions. From 
theoretical viewpoint, one could identify conditions on the 
model parameters (e.g., the initial distribution, the transition 
matrix, and the request probabilities) for which value of 
information is large.  In the current study, we assume that 
information sharing is costless, and that the update is done 
only once at the beginning of the cargo booking horizon. 
From practical viewpoint, one could determine the optimal 
number of updates and the associated updating time periods 
in order to balance the operational cost and the incremental 
benefit.  
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